Deep online hierarchical dynamic unsupervised learning for pattern mining from utility usage data
نویسندگان
چکیده
منابع مشابه
Online Pattern Recognition in Multivariate Data Streams using Unsupervised Learning
Extracting patterns from data streams incrementally using bounded memory and bounded time is a difficult task. Traditional metrics for similarity search such as Euclidean distance solve the problem of difference in amplitudes between static time series prior to comparison by normalizing them. However, such a technique cannot be applied to data streams since the entire data is not available at a...
متن کاملOnline learning behavior and web usage mining
The application of a virtual learning environment has become widespread in Hungarian higher education. Questions of quality and adaptivity are increasingly gaining dominance, manifested in course development and course management which takes the individual specialities of learners well into consideration. In order to increase the adaptivity of the learning process, we need to have exact and rel...
متن کاملUnsupervised Topographic Learning for Spatiotemporal Data Mining
In recent years, the size and complexity of datasets have shown an exponential growth. In many application areas, huge amounts of data are generated, explicitly or implicitly containing spatial or spatiotemporal information. However, the ability to analyze these data remains inadequate, and the need for adapted data mining tools becomes a major challenge. In this paper, we propose a new unsuper...
متن کاملTraversal Pattern Mining in Web Usage Data
Web usage mining is to discover useful patterns in the web usage data, and the patterns provide useful information about the user’s browsing behavior. This chapter examines different types of web usage traversal patterns and the related techniques used to uncover them, including Association Rules, Sequential Patterns, Frequent Episodes, Maximal Frequent Forward Sequences, and Maximal Frequent S...
متن کاملUtility Pattern Approach for Mining High Utility Log Items from Web Log Data
. Mining frequent log items is an active area in data mining that aims at searching interesting relationships between items in databases. It can be used to address a wide variety of problems such as discovering association rules, sequential patterns, correlations and much more. Weblog that analyzes a Web site's access log and reports the number of visitors, views, hits, most frequently visited ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Neurocomputing
سال: 2020
ISSN: 0925-2312
DOI: 10.1016/j.neucom.2019.08.093